Copied to
clipboard

G = C22xC3wrC3order 324 = 22·34

Direct product of C22 and C3wrC3

direct product, metabelian, nilpotent (class 3), monomial

Aliases: C22xC3wrC3, C32.1C62, C62.19C32, He3:3(C2xC6), (C2xHe3):2C6, (C3xC62):2C3, (C32xC6):5C6, C33:9(C2xC6), C6.8(C2xHe3), (C2xC6).14He3, (C22xHe3):3C3, C3.2(C22xHe3), (C2x3- 1+2):1C6, 3- 1+2:1(C2xC6), (C22x3- 1+2):3C3, (C3xC6).6(C3xC6), SmallGroup(324,86)

Series: Derived Chief Lower central Upper central

C1C32 — C22xC3wrC3
C1C3C32C33C3wrC3C2xC3wrC3 — C22xC3wrC3
C1C3C32 — C22xC3wrC3
C1C2xC6C62 — C22xC3wrC3

Generators and relations for C22xC3wrC3
 G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, cf=fc, de=ed, df=fd, fef-1=cd-1e >

Subgroups: 250 in 100 conjugacy classes, 40 normal (12 characteristic)
C1, C2, C3, C3, C22, C6, C6, C9, C32, C32, C2xC6, C2xC6, C18, C3xC6, C3xC6, He3, 3- 1+2, C33, C2xC18, C62, C62, C2xHe3, C2x3- 1+2, C32xC6, C3wrC3, C22xHe3, C22x3- 1+2, C3xC62, C2xC3wrC3, C22xC3wrC3
Quotients: C1, C2, C3, C22, C6, C32, C2xC6, C3xC6, He3, C62, C2xHe3, C3wrC3, C22xHe3, C2xC3wrC3, C22xC3wrC3

Smallest permutation representation of C22xC3wrC3
On 36 points
Generators in S36
(1 12)(2 8)(3 7)(4 10)(5 6)(9 11)(13 32)(14 33)(15 31)(16 22)(17 23)(18 24)(19 34)(20 35)(21 36)(25 30)(26 28)(27 29)
(1 3)(2 6)(4 11)(5 8)(7 12)(9 10)(13 23)(14 24)(15 22)(16 31)(17 32)(18 33)(19 30)(20 28)(21 29)(25 34)(26 35)(27 36)
(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 6 10)(2 9 3)(4 12 5)(7 8 11)(13 14 15)(16 17 18)(19 21 20)(22 23 24)(25 27 26)(28 30 29)(31 32 33)(34 36 35)
(1 21 14)(2 28 22)(3 29 24)(4 34 32)(5 35 31)(6 20 15)(7 27 18)(8 26 16)(9 30 23)(10 19 13)(11 25 17)(12 36 33)
(1 6 10)(2 9 3)(4 12 5)(7 8 11)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)

G:=sub<Sym(36)| (1,12)(2,8)(3,7)(4,10)(5,6)(9,11)(13,32)(14,33)(15,31)(16,22)(17,23)(18,24)(19,34)(20,35)(21,36)(25,30)(26,28)(27,29), (1,3)(2,6)(4,11)(5,8)(7,12)(9,10)(13,23)(14,24)(15,22)(16,31)(17,32)(18,33)(19,30)(20,28)(21,29)(25,34)(26,35)(27,36), (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,21,20)(22,23,24)(25,27,26)(28,30,29)(31,32,33)(34,36,35), (1,21,14)(2,28,22)(3,29,24)(4,34,32)(5,35,31)(6,20,15)(7,27,18)(8,26,16)(9,30,23)(10,19,13)(11,25,17)(12,36,33), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)>;

G:=Group( (1,12)(2,8)(3,7)(4,10)(5,6)(9,11)(13,32)(14,33)(15,31)(16,22)(17,23)(18,24)(19,34)(20,35)(21,36)(25,30)(26,28)(27,29), (1,3)(2,6)(4,11)(5,8)(7,12)(9,10)(13,23)(14,24)(15,22)(16,31)(17,32)(18,33)(19,30)(20,28)(21,29)(25,34)(26,35)(27,36), (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,21,20)(22,23,24)(25,27,26)(28,30,29)(31,32,33)(34,36,35), (1,21,14)(2,28,22)(3,29,24)(4,34,32)(5,35,31)(6,20,15)(7,27,18)(8,26,16)(9,30,23)(10,19,13)(11,25,17)(12,36,33), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36) );

G=PermutationGroup([[(1,12),(2,8),(3,7),(4,10),(5,6),(9,11),(13,32),(14,33),(15,31),(16,22),(17,23),(18,24),(19,34),(20,35),(21,36),(25,30),(26,28),(27,29)], [(1,3),(2,6),(4,11),(5,8),(7,12),(9,10),(13,23),(14,24),(15,22),(16,31),(17,32),(18,33),(19,30),(20,28),(21,29),(25,34),(26,35),(27,36)], [(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,6,10),(2,9,3),(4,12,5),(7,8,11),(13,14,15),(16,17,18),(19,21,20),(22,23,24),(25,27,26),(28,30,29),(31,32,33),(34,36,35)], [(1,21,14),(2,28,22),(3,29,24),(4,34,32),(5,35,31),(6,20,15),(7,27,18),(8,26,16),(9,30,23),(10,19,13),(11,25,17),(12,36,33)], [(1,6,10),(2,9,3),(4,12,5),(7,8,11),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)]])

68 conjugacy classes

class 1 2A2B2C3A3B3C···3J3K3L6A···6F6G···6AD6AE···6AJ9A9B9C9D18A···18L
order1222333···3336···66···66···6999918···18
size1111113···3991···13···39···999999···9

68 irreducible representations

dim111111113333
type++
imageC1C2C3C3C3C6C6C6He3C2xHe3C3wrC3C2xC3wrC3
kernelC22xC3wrC3C2xC3wrC3C22xHe3C22x3- 1+2C3xC62C2xHe3C2x3- 1+2C32xC6C2xC6C6C22C2
# reps13242612626618

Matrix representation of C22xC3wrC3 in GL5(F19)

180000
018000
00100
00010
00001
,
10000
018000
00100
00010
00001
,
10000
01000
001100
00070
00001
,
10000
01000
00700
00070
00007
,
70000
07000
00001
001800
000180
,
70000
07000
00700
00010
00001

G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,7,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[7,0,0,0,0,0,7,0,0,0,0,0,0,18,0,0,0,0,0,18,0,0,1,0,0],[7,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,1] >;

C22xC3wrC3 in GAP, Magma, Sage, TeX

C_2^2\times C_3\wr C_3
% in TeX

G:=Group("C2^2xC3wrC3");
// GroupNames label

G:=SmallGroup(324,86);
// by ID

G=gap.SmallGroup(324,86);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,303,1096]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d^-1*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<